e¡¡modern¡¡era¡¡one¡¡of¡¡normal¡¡growth£¿¡¡Or¡¡should¡¡we¡¡ascribe¡¡the¡¡characteristics¡¡of¡¡both¡¡periods¡¡to¡¡so¡called¡¡historical¡¡acomidents¡ªto¡¡the¡¡influence¡¡of¡¡conjunctions¡¡in¡¡circumstances¡¡of¡¡which¡¡no¡¡explanation¡¡is¡¡possible£»¡¡save¡¡in¡¡the¡¡omnipotence¡¡and¡¡wisdom¡¡of¡¡a¡¡guiding¡¡Providence£¿
The¡¡explanation¡¡which¡¡has¡¡become¡¡commonplace£»¡¡that¡¡the¡¡ancients¡¡employed¡¡deduction¡¡chiefly¡¡in¡¡their¡¡scientific¡¡inquiries£»¡¡while¡¡the¡¡moderns¡¡employ¡¡induction£»¡¡proves¡¡to¡¡be¡¡too¡¡narrow£»¡¡and¡¡fails¡¡upon¡¡close¡¡examination¡¡to¡¡point¡¡with¡¡sufficient¡¡distinctness¡¡the¡¡contrast¡¡that¡¡is¡¡evident¡¡between¡¡ancient¡¡and¡¡modern¡¡scientific¡¡doctrines¡¡and¡¡inquiries¡£¡¡For¡¡all¡¡knowledge¡¡is¡¡founded¡¡on¡¡observation£»¡¡and¡¡proceeds¡¡from¡¡this¡¡by¡¡analysis£»¡¡by¡¡synthesis¡¡and¡¡analysis£»¡¡by¡¡induction¡¡and¡¡deduction£»¡¡and¡¡if¡¡possible¡¡by¡¡verification£»¡¡or¡¡by¡¡new¡¡appeals¡¡to¡¡observation¡¡under¡¡the¡¡guidance¡¡of¡¡deduction¡ªby¡¡steps¡¡which¡¡are¡¡indeed¡¡correlative¡¡parts¡¡of¡¡one¡¡method£»¡¡and¡¡the¡¡ancient¡¡sciences¡¡afford¡¡examples¡¡of¡¡every¡¡one¡¡of¡¡these¡¡methods£»¡¡or¡¡parts¡¡of¡¡one¡¡method£»¡¡which¡¡have¡¡been¡¡generalized¡¡from¡¡the¡¡examples¡¡of¡¡science¡£
A¡¡failure¡¡to¡¡employ¡¡or¡¡to¡¡employ¡¡adequately¡¡any¡¡one¡¡of¡¡these¡¡partial¡¡methods£»¡¡an¡¡imperfection¡¡in¡¡the¡¡arts¡¡and¡¡resources¡¡of¡¡observation¡¡and¡¡experiment£»¡¡carelessness¡¡in¡¡observation£»¡¡neglect¡¡of¡¡relevant¡¡facts£»¡¡by¡¡appeal¡¡to¡¡experiment¡¡and¡¡observation¡ªthese¡¡are¡¡the¡¡faults¡¡which¡¡cause¡¡all¡¡failures¡¡to¡¡ascertain¡¡truth£»¡¡whether¡¡among¡¡the¡¡ancients¡¡or¡¡the¡¡moderns£»¡¡but¡¡this¡¡statement¡¡does¡¡not¡¡explain¡¡why¡¡the¡¡modern¡¡is¡¡possessed¡¡of¡¡a¡¡greater¡¡virtue£»¡¡and¡¡by¡¡what¡¡means¡¡he¡¡attained¡¡his¡¡superiority¡£¡¡Much¡¡less¡¡does¡¡it¡¡explain¡¡the¡¡sudden¡¡growth¡¡of¡¡science¡¡in¡¡recent¡¡times¡£
The¡¡attempt¡¡to¡¡discover¡¡the¡¡explanation¡¡of¡¡this¡¡phenomenon¡¡in¡¡the¡¡antithesis¡¡of¡¡¡°facts¡±¡¡and¡¡¡°theories¡±¡¡or¡¡¡°facts¡±¡¡and¡¡¡°ideas¡±¡ªin¡¡the¡¡neglect¡¡among¡¡the¡¡ancients¡¡of¡¡the¡¡former£»¡¡and¡¡their¡¡too¡¡exclusive¡¡attention¡¡to¡¡the¡¡latter¡ªproves¡¡also¡¡to¡¡be¡¡too¡¡narrow£»¡¡as¡¡well¡¡as¡¡open¡¡to¡¡the¡¡charge¡¡of¡¡vagueness¡£¡¡For¡¡in¡¡the¡¡first¡¡place£»¡¡the¡¡antithesis¡¡is¡¡not¡¡complete¡£¡¡Facts¡¡and¡¡theories¡¡are¡¡not¡¡coordinate¡¡species¡£¡¡Theories£»¡¡if¡¡true£»¡¡are¡¡facts¡ªa¡¡particular¡¡class¡¡of¡¡facts¡¡indeed£»¡¡generally¡¡complex£»¡¡and¡¡if¡¡a¡¡logical¡¡connection¡¡subsists¡¡between¡¡their¡¡constituents£»¡¡have¡¡all¡¡the¡¡positive¡¡attributes¡¡of¡¡theories¡£
Nevertheless£»¡¡this¡¡distinction£»¡¡however¡¡inadequate¡¡it¡¡may¡¡be¡¡to¡¡explain¡¡the¡¡source¡¡of¡¡true¡¡method¡¡in¡¡science£»¡¡is¡¡well¡¡founded£»¡¡and¡¡connotes¡¡an¡¡important¡¡character¡¡in¡¡true¡¡method¡£¡¡A¡¡fact¡¡is¡¡a¡¡proposition¡¡of¡¡simple¡£¡¡A¡¡theory£»¡¡on¡¡the¡¡other¡¡hand£»¡¡if¡¡true¡¡has¡¡all¡¡the¡¡characteristics¡¡of¡¡a¡¡fact£»¡¡except¡¡that¡¡its¡¡verification¡¡is¡¡possible¡¡only¡¡by¡¡indirect£»¡¡remote£»¡¡and¡¡difficult¡¡means¡£¡¡To¡¡convert¡¡theories¡¡into¡¡facts¡¡is¡¡to¡¡add¡¡simple¡¡verification£»¡¡and¡¡the¡¡theory¡¡thus¡¡acquires¡¡the¡¡full¡¡characteristics¡¡of¡¡a¡¡fact¡£
1¡£ The¡¡title¡¡that¡¡best¡¡expresses¡¡the¡¡ideas¡¡of¡¡this¡¡passage¡¡is¡¡
£§A£§¡£¡¡Philosophy¡¡of¡¡mathematics¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£§B£§¡£¡¡The¡¡Recent¡¡Growth¡¡in¡¡Science¡£
£§C£§¡£¡¡The¡¡Verification¡¡of¡¡Facts¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£§C£§¡£¡¡Methods¡¡of¡¡Scientific¡¡Inquiry¡£
2¡£ Acomording¡¡to¡¡the¡¡author£»¡¡one¡¡possible¡¡reason¡¡for¡¡the¡¡growth¡¡of¡¡science¡¡during¡¡the¡¡days¡¡of¡¡the¡¡ancient¡¡Greeks¡¡and¡¡in¡¡modern¡¡times¡¡is¡¡
£§A£§¡£¡¡the¡¡similarity¡¡between¡¡the¡¡two¡¡periods¡£
£§B£§¡£¡¡that¡¡it¡¡was¡¡an¡¡act¡¡of¡¡God¡£
£§C£§¡£¡¡that¡¡both¡¡tried¡¡to¡¡develop¡¡the¡¡inductive¡¡method¡£
£§D£§¡£¡¡due¡¡to¡¡the¡¡decline¡¡of¡¡the¡¡deductive¡¡method¡£
3¡£ The¡¡difference¡¡between¡¡¡°fact¡±¡¡and¡¡¡°theory¡±
£§A£§¡£¡¡is¡¡that¡¡the¡¡latter¡¡needs¡¡confirmation¡£
£§B£§¡£¡¡rests¡¡on¡¡the¡¡simplicity¡¡of¡¡the¡¡former¡£
£§C£§¡£¡¡is¡¡the¡¡difference¡¡between¡¡the¡¡modern¡¡scientists¡¡and¡¡the¡¡ancient¡¡Greeks¡£
£§D£§¡£¡¡helps¡¡us¡¡to¡¡understand¡¡the¡¡deductive¡¡method¡£
4¡£ Acomording¡¡to¡¡the¡¡author£»¡¡mathematics¡¡is
£§A£§¡£¡¡an¡¡inductive¡¡science¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£§B£§¡£¡¡in¡¡need¡¡of¡¡simple¡¡verification¡£
£§C£§¡£¡¡a¡¡deductive¡¡science¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£§D£§¡£¡¡based¡¡on¡¡fact¡¡and¡¡theory¡£
5¡£ The¡¡statement¡¡¡°Theories¡¡are¡¡facts¡±¡¡may¡¡be¡¡called¡£
£§A£§¡£¡¡a¡¡metaphor¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£§B£§¡£¡¡a¡¡paradox¡£
£§C£§¡£¡¡an¡¡appraisal¡¡of¡¡the¡¡inductive¡¡and¡¡deductive¡¡methods¡£
£§D£§¡£¡¡a¡¡pun¡£
Vocabulary
1¡£ inductive¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¹éÄÉ·¨
induction¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡n¡£¹éÄÉ·¨
2¡£ deductive¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÑÝÒï·¨
deduction¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡n¡£ÑÝÒï·¨
3¡£ culmination¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡µ½´ï¶¥/¼«µã
4¡£ conversant¡¡£¨with£©¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊìϤµÄ£¬¾«Í¨µÄ
5¡£ exercise¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÔËÓã¬ÊµÐУ¬Ö´ÐÐÒÇʽ
singular¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡×¿Ô½µÄ£¬·Ç·²µÄ£¬¶ÀÒ»ÎÞ¶þµÄ
6¡£ conjunction¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡½áºÏ£¬Í¬Ê±·¢Éú
7¡£ omnipotence¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡È«ÄÜ£¬ÎÞÏÞȨ/ÍþÁ¦
8¡£ Providence¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨´óд£©Ö¸Éϵۣ¬ÌìµÀ£¬ÌìÁî
9¡£ commonplace¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Æ½·²µÄ£¬³Â¸¯µÄ
10¡£ inquiry¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡µ÷²é£¬Ì½¾¿£¨ÕæÀí£¬ÖªÊ¶µÈ£©
11¡£ doctrine¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡½ÌÒ壬ѧ˵£¬½²Òå
12¡£ correlative¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ï໥¹ØÁªµÄ
13¡£ antithesis¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¶ÔÁ¢Ã棬¶Ôż£¨ÐÞ´ÇѧÖУ©£¬¶Ô¾ä
14¡£ coordinate¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Í¬µÈµÄ£¬²¢ÁеÄ
15¡£ subsist¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Éú´æ£¬Î¬³ÖÉú»î
16¡£ attribute¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÌØÕ÷£¬ÊôÐÔ
17¡£ connote¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Òâζ×Å£¬º¬Ðָ´ÊÄÚº£©
ÄѾäÒë×¢
1¡£ Why¡¡the¡¡inductive¡¡and¡¡mathematical¡¡sciences£»¡¡after¡¡their¡¡first¡¡rapid¡¡development¡¡at¡¡the¡¡culmination¡¡of¡¡Greek¡¡civilization£»¡¡advanced¡¡so¡¡slowly¡¡for¡¡two¡¡thousand¡¡years¡¡are¡¡questions¡¡which¡¡have¡¡interested¡¡the¡¡modern¡¡philosopher¡¡not¡¡less¡¡than¡¡the¡¡objects¡¡with¡¡which¡¡these¡¡sciences¡¡are¡¡more¡¡immediately¡¡conversant¡£
£§½á¹¹¼òÎö£§¡¡ÆÆÕۺźóÃæµÄÄÚÈÝ£¨¼ûÄѾäÒë×¢2£©ÏÈÆ²¿ª¡£ÕâÑù±ãÓÚÀí½â£¬Õû¸ö¾ä×ÓÊÇÖ÷ν±í½á¹¹£¬Ç°ÃæÒ»¸öÎÊÌâ¾ä×÷Ö÷Óquestionºó¸úÒ»¸ö¶¨Óï´Ó¾ä£¬ºÍnot¡¡less¡¡thanÁ¬½ÓµÄ±íÓï¡£
£§²Î¿¼ÒëÎÄ£§¡¡ÎªÊ²Ã´¹éÄÉ·¢ºÍÊýѧ¿ÆÑ§£¬ÔÚÏ£À°ÎÄÃ÷´ïµ½¶¥µãʱÊ×ÏÈ¿ìËÙ·¢Õ¹ºó£¬Á½Ç§ÄêÄÚ½øÕ¹»ºÂý£¬ÏÖÔÚÕÜѧ¼Ò¶ÔÕâ¸öÎÊÌâµÄÐËȤ²»ÑÇÓÚ¶ÔÕâЩ¿ÆÑ§ºÜÊìϤÑо¿µÄ¶ÔÏó¡£
2¡£ ¡¡ªand¡¡why¡¡in¡¡the¡¡following¡¡two¡¡hundred¡¡years¡¡a¡¡knowledge¡¡of¡¡natural¡¡and¡¡mathematical¡¡science¡¡has¡¡acomumulated£»¡¡which¡¡so¡¡vastly¡¡exceeds¡¡all¡¡that¡¡was¡¡previously¡¡known¡¡that¡¡these¡¡sciences¡¡may¡¡be¡¡justly¡¡regarded¡¡as¡¡the¡¡products¡¡of¡¡our¡¡own¡¡times¡ª¡
£§²Î¿¼ÒëÎÄ£§¡¡ÎÊʲôÔÚºóÀ´µÄ¶þ°ÙÄêÖÐ×ÔÈ»¿ÆÑ§ÊýÀí¿ÆÑ§»ýÀÛÆðÀ´£¬ËüÃǹ㷺µÄ³¬Ô½Á˹ýÈ¥ÒÑÖªµÄÒ»ÇУ¬ËùÒԾͰÑÕâЩ¿ÆÑ§ÊÓΪÎÒÃÇʱ´úµÄ²úÆ·¡£
3¡£ arrested¡¡development¡¡¡¡¡¡¡¡¡¡¡¡Í£ÖÍ·¢Õ¹£¨±»ÖÆÖ¹Á˵ķ¢Õ¹£©¡£
4¡£ Or¡¡should¡¡we¡¡ascribe¡¡the¡¡characteristics¡¡of¡¡both¡¡periods¡¡to¡¡so¡called¡¡historical¡¡acomidents¡ªto¡¡the¡¡influence¡¡of¡¡conjunctions¡¡in¡¡circumstances¡¡of¡¡which¡¡no¡¡explanation¡¡is¡¡possible£»¡¡save¡¡in¡¡the¡¡omnipotence¡¡and¡¡wisdom¡¡of¡¡a¡¡guiding¡¡Providence£¿
£§²Î¿¼ÒëÎÄ£§¡¡»òÕßÎÒÃÇÊÇ·ñÓ¦µ±°ÑÁ½¸ö½×¶ÎµÄÌØµã¹éÒòÓÚËùνµÄÀúÊ·µÄżȻÐÔ£¨ÒâÍâʼþ£©¡ª¡ª¹éÒòÓڿ͹ۻ·¾³ÖÐÏàËÆ£¨½áºÏ£©µÄÓ°Ïì¡£ÕâÒ»µã³ý·ÇÒÔÖ¸µ¼Ò»ÇеÄÉϵ۵ÄÖǻۺÍÎÞÏÞȨÀûÀ´½âÊÍ£¬·ñÔòÄÑÒÔ½â˵Çå³þ¡£
д×÷·½·¨ÓëÎÄÕ´óÒâ
ÕâÊÇÆªÒéÂÛÎÄ£¬ÂÛ¼°¿ÆÑ§Ì½Ë÷µÄ·½·¨£¬×ÜÌåÊÇÒò¹ûд·¨£¬¾ßÌå·ÖÎöÓÖÊǶԱÈд·¨¡£×÷Õß²ÉÓÃÎÊ´ð·½Ê½Ì½¾¿ÎªÊ²Ã´Ï£À°ÎÄÃ÷¶¥·åÖ®ºóÁ½Ç§Ä꣬¿Æ¼¼·¢Õ¹»ºÂý£¬¶ø×î½üÁ½°ÙÄêÓÖѸËÙ·¢Õ¹³¬Ô½Ç°ÈË£¬ÆäÔÒòÔÚÄÄÀÊDzÉÓÃУ¬¾É·½·¨ËùÖ£¬Àúʷ֮żȻÐÔ£¬»¹ÊÇÉÏÌì°²ÅÅ¡£
È»ºóÒÔÏÖ´úÓùéÄÉ·¨£¬¹Å´úÓÃÑÝÒ﷨̫ÏÁ°¯ËµÃ÷¿ÆÑ§×ÜÊÇÔڹ۲죬ʵÑ飬¼ìÑ飬֤ʵÖÐǰ½ø¡£µ«ÊÂʵÄÑÒÔ½âÊÍÂýºÍ¿ìµÄÏÖÏó¡£×îºóÒÔ¡°¶ÔÁ¢¡±¡ª¡ªÊÂʵºÍÀíÂÛ¶ÔÁ¢¹Å´úÖØÊÓÊÂʵÀ´½âÊÍ¡£È»ÕâÁ½ÕßÊǶÔÁ¢µÄͳһ¡£ÕæÕýµÄÀíÂÛ¾ÍÊÇÊÂʵ¡£ÊÂʵ£¬¹¹³ÉÖ®¼ä¾ßÂß¼ÁªÏµ£¬¾Í¾ßÓÐÀíÂÛµÄÒ»ÇÐÕýÃæÌØÐÔ¡£ÕâÖÖÇø·ÖËä²»×ãÒÔ½âÊÍ¿ÆÑ§Ñо¿ÖÐÕæÕý·½·¨£¬µ«µì¶¨ÁËÁ¼ºÃµÄ»ù´¡£¬º¬ÓÐÕæÕý·½·¨ÖеÄÖØÒªÌØÐÔ¡£
´ð°¸Ïé½â
1¡£ D¡£¡¡¿ÆÑ§Ñо¿/̽Ë÷µÄ·½·¨¡£ÎÄÕÂÒ»¿ªÊ¼¾ÍÌá³öÎÊÌ⣬Ϊʲô´ÓÏ£À°ÎÄ»¯¶¥·åʱÆÚºóÁ½Ç§ÄêÀ´¹éÄÉ·¨ºÍÊýѧ¿ÆÑ§·¢Õ¹Èç´Ë»ºÂý£¬¶øºóµÄÁ½°ÙÄêÓÖ³¬Ô½ÁËǰÈË£¬ÊÇÓ¦ÓÃУ¬¾É·½·¨¹ØÏµ»¹ÊÇÆäËü£¨¼ûÄѾäÒë×¢1£¬2£©¡£µÚ¶þ¶Î½²°£¼°¹Å´úÔÚ¿ÆÑ§Ì½Ë÷ÖÐÔËÓÃÁ